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Abstract-A boundary element method for analysing thermocapillary convection with a free surface has 
been developed. The divergence theorem is applied to the non-linear convective volume integral in the 
boundary element formulation with the pressure penalty function. Consequently, velocity and temperature 
gradients are eliminated and the complete formulation is written in terms of velocity and temperature. This 
provides considerable reduction in storage and computational requirements while improving accuracy. 
Employing this method, a simulation of surface tension driven convective flow in a rectangular cavity with 
differential heated isothermal lateral walls in a microgravity environment has been demonstrated. The 
influence of different Marangoni numbers, Reynolds numbers and Prandtl numbers on the shape of the 

free surface, the temperature distribution and the flow fields has also been studied. 

INTRODUCTION 

THERMAL convection is a basic problem in thermal 
science. There are two kinds of thermal convection in 
a rectangular cavity with differently heated lateral 

walls : buoyancy convective flow and thermocapillary 
convective flow. However, the thermocapillary con- 
vection becomes the dominant convection in mic- 
rogravity and micro-scale environment. It is a surface 
tension driven convective flow. A gradient of surface 
tension is produced by the difference of temperatures 
along the free surface and drives the flow along this 
surface. The flow propagates to the inner region of 
the cavity, therefore causing convection in the cavity. 
The study of this convective flow has important prac- 
tical significance, for example, in space processing of 
electric materials. 

Recently, reviews and investigations on problems 
in this field have been made [l-3]. Experiments of 
thermocapillary convection in rectangular cavity have 
been performed in space [4,5] and in laboratories 
[6,7]. Numerical modelings of these problems have 
been done by the finite difference method (FDM) 
[8-131 and finite element method (FEM) [l4,15]. 
respectively. However, they only calculated the con- 
vection with flat or slightly deformed free surface [8- 
1 I, 151, and some limitations of the parameters are 
assumed. For example, a very low P,. was chosen in 
ref. [IO] ; although a wide range of P, was chosen in 
ref. [I I], but very small capillary number and a flat at 
leading order free surface were considered. In ref. [l4], 
the effect of deformed free surface on thermocapillary 
convection was considered, but Marangoni numbers 
were limited to lower than 400. moreover, when the 
effect of P, on the free surface was further considered, 
zero R, - M, was chosen. In ref. [ 131, high M, numbers 
were considered, however, very low capillary number 
(= IO- “) was chosen, so that a fixed free surface shape 

has to be assumed to maintain its static shape of 
constant curvature. In ref. [12], the effects of fixed 
convex- and concave-free surface shapes for a unit 
P, fluid were considered ; however, the convergence 
beyond a Marangoni number of IO’ had not been 

reached. 
It is well known that the computational accuracy is 

lost in the region of high Reynolds number since the 
scheme of convective discretization introduces 
numerical diffusion in FDM and FEM. In order to 
reduce the numerical diffusion, some new schemes 
for discretizing convective terms have been developed 
such as QUICK [16] and QUICKER [17]. There are 
many difficulties in solving the free surface prob- 
lems at middle and high R, and further study is 
necessary. 

The boundary element method (BEM) has pro- 
vided potential advantages of storage and com- 
putational requirements over FDM and FEM. There- 
fore, many scientists have endeavored to raise the 
computational advantages of BEM. 

Viscous flow problems, including thermal convec- 
tion, are typical non-linear problems. In order to solve 
these problems, Kitagawa et al. [18, 191 developed the 
boundary element formulation by the basic solution 
of the Navier equations in elasticity with the penalty 
function of pressure terms. The calculation of the 
convective terms is the most important point when 
solving these problems at high Reynolds numbers. In 
[ 181, finite difference schemes and a boundary element 
iterative scheme (BEIS) were applied to calculate con- 
vective terms and compare the advantages of using 
upwind or central difference schemes and BEIS. As 
shown in the numerical results, BEIS of the convective 
terms is the most accurate of the two approaches. 
However, the computation is complex. 

The first objective of this study is to fill a gap in 
solving the thermocapillary convection of an open 
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NOMENCLATURE 

4 Biot number 

C;, (p*U;/cff) = H*/L* 

.4* the gravity acceleration 

G, Grashof number, p*‘g*fi*A.O*H*‘//~*~ 
H* the initial _r, at .u-center position 
L* the length of the cavity 

M, Mardngoni number, P, R, 

n, unit normal components 

P* pressure 

p, Prandtl number, p*/p*ti* 

Y o.,, 
R, Reynolds number, iJ:p*H*Ip* 

r the distance between 5 and v 
t* the traction, cr,Tn, 
is,. CJ,, Kelvin’s solution 

ux Marangoni velocity, - H*AO*o;/L*p* 

l’, velocity 
x, 1 Cartesian coordinates. 

Greek symbols 

a,,(5) 6,, for <E .4 
cz,,( 5) J6,, for 5 E I- 

B the angle included between z and x 
6 ‘I the Kronecker delta symbol 

i the curvature of free surface 

;* 
computational grade points 
temperature 

AO* temperature difference 0: -UF 

0 In r 

h.* the thermal diffusivity 
i” the penalty parameter 

/‘* the absolute viscosity 

5 computational grade points 

P* density 

0; the stress tensor 

01 the temperature coefficient of of 

0): the surface tension 

r, unit tangential components 

~(5) 27~ for ce.4 

x(5) nfor <f5r 
(5” the coefficient of expansion. 

Superscripts 
* 

dimensional variables 
blank non-dimensional variables 
li liquid 

g gas 
m iterative steps 
0 initial values. 

Subscripts 
f free surface 
b bottom 

; 
right 
left. 

rectangular cavity : simulating the thermocapillary 
convection with a free surface in the region of widely 
varying physical parameters-Mardngoni numbers, 
Reynolds numbers and Prandtl numbers. An immedi- 
ate objective of this research is to model the thermo- 
capillary convection in crystal-growth techniques. 
The analytical or numerical study of the free surface 
problem in crystal-growth techniques is very difficult. 
We shall restrict ourselves to the model problem of 
the open-boat type crystal growth technology. and we 
only study the gas-melt free boundary, assuming a flat 

crystal-melt interface shape. The free surface problem 
of open-boat type is simplified as the free surface 
problem in an open rectangular cavity. The left ver- 
tical boundary of the cavity can be interpreted as the 
crucible wall. The right vertical boundary of the cavity 
can be interpreted as the melt&crystal interface. The 
temperatures equal to (I, and O,, respectively. 

Another objective of this work is to develop a 
boundary element method to solve these problems at 
middle and high R,, P,. On the basis of the BEM with 
the pressure penalty function [IS], we improved the 
method for computing the convective terms. The 
divergence theorem is applied to the non-linear con- 
vective volume integral, so that velocity and tem- 
perature gradients are eliminated. The complete for- 

mulation is written in terms of velocity and 
temperature. Consequently, this provides con- 
siderable reduction in storage and computational 
requirements while improving accuracy. We applied 
the normal stress balance condition as the iterative 
equation of the free surface such as in ref. [20] and 
have successfully calculated the isothermal free sur- 
face problems at middle R, [2l, 221 and thermo- 
capillary convection in a two-layer immiscible fluid 
system [23]. In this paper, this method is extended to 
calculate more complex non-linear problems, such as 
problems with a temperature gradient on the free sur- 
face. On the free surface, the temperature dependence 
of the surface tension must be taken into account, 
non-homogeneous surface tension drives the con- 
vective flow. Since gradients of surface tension appear 
on the free surface, the stress balance conditions 
become more complex, The non-linear momentum 
equations and energy equation are coupled with the 
free surface problem. The non-linear character of the 
problem is thus enhanced. 

In this paper we successfully calculated thermo- 
capillary convection with a free surface in an open 
rectangular cavity with viscous liquid in microgravity 
environment. Some important numerical results are 
presented. 
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BASIC EQUATIONS 

One considers a system consisting of a steady 

incompressible viscous liquid in a rectangular cavity 
with differentially heated isothermal lateral walls (the +8,.!$ 1 Ui,, d/4 = 0. (6) 
temperature difference is AO*). On the basis of the 
basic laws of fluid mechanics and Boussinesq’s 
approximation, the governing equations of this prob- 

Employing the Gauss divergence theorem, one 

lem can be described by a tensor notation and a non- 
obtains the following integral equations : 

dimensional form as follows : 
~$5) + T,,(5> rib,(v) d- ~,(t>rlP,(rl) d- 

Continuity equation s r I r 

u,,, = 0 (1) = U~,(<>V) Vk(V)uj.k(V)-a,,$ dA. (7) 
s ( A e 

Momentum equations 
> 

t’,“J.,+P.,- &az.,+Q),-&~ = 0 

The convective terms appear in the domain integral 

(2) of equations (7). The values of these convective terms 
e e can be obtained either by writing integral equations 

Energy equation directly for [v,v,J, or by employing finite difference 
scheme [18]. The former is more complex in calcu- 

1 
Z’,O,,- -0 = 0 (3) 

lation, but the latter loses the accuracy. One uses the 

M, .‘I divergence theorem to the domain integrals in (7). 

where the lengths and velocity are scaled with respect 

to H* and U$, respectively. The relation between 

pressure p* and non-dimensional pressure p is 
p = (p* + p*g*y*)/p*U; ‘. U,* = (- H*AQ*(r;/L*p*), 

where H* is the initial height of the free surface at x- 
center position, L* is the length of the cavity, ok is the 
temperature coefficient of the surface tension of the 
liquid, p* is the absolute viscosity. The parameters 
are: Reynolds number R, = (p*U,*H*/p*), Prandtl 
number P, = (p*/p*“*)> Marangoni number 

M, = R, P,, and Grashof number G, = 

(p*‘g*fi*AO*H*“/p*‘), where p*, K*, g* and W* are 
liquid density, thermal diffusivity, gravity acceler- 
ation and coefficient of expansion, respectively. In 
equation (3), fI = (@*--@:)/A@*, A@* = 0:-e:, 0* is 
the temperature, subscripts I and r refer to the left and 
right boundaries, respectively. 

One uses a penalty function technique [18] to cal- 
culate the pressure. 

p = -ill,,, (4) 

where i is the penalty parameter. Taking a large value 
of 1 will make t’,,, approach zero and satisfy mass 
conservation in an approximate manner. Substituting 
equation (4) into (2), one obtains : 

J U,,V~,,~ dA = U~,vI~~,nl dT - U~,,LUIIV, d.4. A s r J n 
Then, equations (7) are transformed into : 

- J u,,(L ~Hvdrlh(ah.(;r?) + t,(v)1 Wrl) r 
=-J[ u,,., (5, ‘lh W,(?) A 
+ W.vN,$ 1 dA(v) (8) e 

where ax 5) = 6,, for 5 E A, a,,( 5) = jh,, for 5 E r, and 
6,, is the Kronecker delta symbol. These fundamental 
solutions Cl,,, T,, are known as Kelvin’s solutions and 
have the form : 

u,, = - &j[(3-49) ln rS,,+r,,r,,l (9) 

1 

T,, = - 4n(l -@)r 
I((1 -24)6,,+22r.,r,,)v., 

1 ( > 1 
i+ E t’,,,,+ -1 -6 ,G,B. (5) 

-(I -2~)(~.z~,-~,,~,)l (10) 
e 

R, I.,, = u,u,., 
c ” RI where+ = (1/2(L+(l/R,))),y = l/R,,r = 15-~I,and 

Equations (5) are similar to the Navier equations of n, is the direction cosines of the outward normal to 

elasticity. 
the boundary of the domain. One can express the 
differentials of Kelvin’s solution as : 

BOUNDARY INTEGRAL EQUATIONS Uc,.k = - 

Applying the well-known Kelvin’s fundamental 
solution of the Navier equations and the weighted 

+2r,,r.~~.j-~kr~,,-~k,r,,l. (11) 

residual approach, equations (5) are transformed into One notes that velocity gradients are eliminated. 
the following integral equations : The complete formulation is written in terms of 
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velocity. Consequently, this provides considerable 
reduction in storage and computational requirements 
while improving accuracy. 

Applying Green’s second theorem, a similar bound- 
ary integral equation equivalent to Poisson equation 
can be found for energy equation (3). 

Similarly, using the divergence theorem to the 
domain integral with convective term, one obtains 

Then, equation (12) is transformed into : 

= -Iv;, s OO.ir>, dA (14) 
,I 

q = (I .I/ 

where x(t) = 271 for (EA. and x(t) = n for <ET. 
The fundamental solution is known as the solution of 
Poisson equation : 

Q = In Y. (15) 

One notes that temperature gradients are also elim- 
inated. Therefore, the same advantages appear. 

DISCRETIZATION OF BOUNDARY INTEGRAL 
EQUATIONS 

In order to solve boundary integral equations (8) 
and (14), one divides boundary (lJ and domain (A) 

into smooth line segments (r,) and corresponding 
triangular cells, respectively. Then, boundary integral 
equations (8) and (14) can be discretized as the 
following algebraic equations : 

A,,o,,+B,,zl,,+C,,t,,+D,,t,, = W,, (1’5) 

E,,c,,+F,,c,,+G,,t,,+H,,t,, = w,, (17) 

X<,(), + Z, q, = WV, (18) 

A,, = a,, + s 7-,,(5,>ll,) dr (19) 
r, 

B,, = 
s 

T,,(&,r,) df- (20) 
‘I 

c,, = - s u,,(tr>v,) dr (21) 
0 

D,, = - s q At, 3 rl,) dr (22) 
r, 

6, = s T,,(i;r,r?,) dr (23) 
r, 

f?, = x,, + ?’ T,,(<,,v,) a- (24) 
5 

G,, = - 
s 

u,,(5,>vl,) df- (25) 
r, 

H,,= - s ~,,(,r,~~,) dr (26) 
r, 

Jf,, = x(L) - s @,,,(5,?11,) dr (27) 
r, 

z, = s @(i”,> II,) d- (28) 
r, 

GrO 
+u,,(t,>v) ~~- R,2 I dA-c,(vy,)v,(rl,)n,(rl,)C,, 

-v,(~,)~~~o?,)nk(~,)D,, 
1 

(29) 

-v,(~,)t’r(q,)nk(~,)G,,-l~,(ll,)~’~(~,)nk(~,)H,, 
1 

(30) 

+M,0(11,)vl,(~,)~k(r,)Z,, . (31) 
I 

Equations (I 6)-( 18) represent 3N equations for 6N 

unknown c,,, I’,,, t!,, t,,, O,, q,. The remaining equa- 
tions must come from the boundary conditions. 
Hence, three boundary conditions must be specified 
at every grid point. On the free surface, one shall 
adopt an iterative determination ; therefore one must 
employ a fourth condition-the normal stress balance 
condition to update the free surface at each iteration 
except that three conditions must be imposed. 

BOUNDARY CONDITIONS 

On the,fiee surface S, 
There is no momentum transfer across the free sur- 

face, so 

I’, = u, tg 8. (32) 

The heat radiation condition is : 

-q = Jf&8*~_0:~) (33) 
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where Bi is Biot number, Bi = (GAQ*‘H*/k), E, Z and 
k- are the emissivity, Stefan-Boltzmanu constant and 
the thermal conductivity, respectively. Bcf is ambient 
gas temperature. 

The tangential stress balance condition is a:“n,~,- 
IT:%,s~ = Vazr,, where n, and z, are unit normal and 
tangential vectors, respectively. The stress tensor is 0: = 
-p*ii,, + lp?;, ez = (c,T,+z$);2. The traction is 
rp = obn,. The ~dng~ntial stress balance condition can 
be transformed into t:“r, - fTEz, = V&, . The surface 
tension rrX is assumed to vary linearly with the tem- 
perature. Therefore one obtains the following balance 
condition of the tangential stress on the free surface : 
(t,*“- t,*+, = CT;(C?~~*/&). If the surface tension is 
scaled with respect to cr:,, cr+, = &,A(?*, where s = Ii, g 
refer to liquid and gas, respectively, then one obtains 
the following non-dimensional form of the tangen- 
tial stress balance condition : C,[&,T,] = 
cr;l(SO/&). If gas viscosity is further eliminated, then 
the tangential stress balance condition is simplified as 

where 

The normal stress balance condition is 
cr*“n n--rr*% n- = Vatni+o;[* where <* is the cur- 
v~ture’of ihe ‘free surface. One ‘obtains the following 
non-dimensional form of the normal stress balance 
condition : 

(35) 

In order to calculate the shape of the free surface, 
one needs to employ the following relation between 
the curvature of the free surface and the angle p that 
the tangent z of the free surface makes with the co- 
ordinate x (see Fig. 1). 

sin [P(X)] = 
s 

’ c(x) dx. (36) 
0 

One has fixed the contact angle at 180”, and, on the 
basis of mass conservation, one obtains the relation : 
foxy&) dx = E, where A * = (L*JH*) = C, -I, cis 

s 
b 

X 

Fw. 1. Schematic for t~ermoc~pillary convection with a free 
surface in cavity. 

the volume of the liquid ; so one obtains the iterative 
equation of the free surface : 

Y,=Y,+ k(PW~ 
5 

(37) 
0 

y0 = C,-r;‘; - C, 
s j 

‘* dx .’ [tg (&I dx. 
0 0 

On the ~#tto~ wall Sh 

c’! = 0, L’, = 0, q = 0. (38) 

On the left wall S, 

VI = 0, l’, = o> 0 = 1. (39) 

On the right wall S, 

D) = 0, 0, = 0, 0 = 0. (40) 

NUMERICAL ALGORITHM OF THE PROBLEM 

One writes equations ( l6)-( 18) in abbreviated form 
s1S 

w = 4ti) (41) 

where $ is the unknown. 
There are several schemes of solving non-linear 

equation systems. 

Newton-Raphson scheme : 

rr(lp)ly+ ’ = wII/“)v-~*(v7 

L,*($) = w--o(ll/) 

I-&$) = Eg? 

The quasi-Newton scheme with Broyden’s update 
[14,24] : 

* = Ji’V 

9,,, = *,“-4p 

64 

Since the problem has strong non-linear character, 
in order to achieve better convergence it is necessary to 
use non-linear iterative methods such as the Newton- 
Raphson scheme ; however, it requires the calculation, 
assembly and inverse of the Jacobian matrix II( $) at 
each iterative step. The quasi-Newton method with 
Broyden’s update can greatly reduce computational 
cost and the convergence rate approaches the same as 
the Newton-Raphson method. A detailed description 
of the method was presented in ref. [24], and the 
method was applied to calculate the non-linear equa- 
tion systems of the finite element discretization in ref. 

f141. 
One calculates the thermocapillary convection in an 
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open cavity by the iterative method that includes the 
following steps. 

(1) Given the initial free surface and given the initial 
velocities and temperatures at nodal points, calculate 
the matrices including Green’s function U,,, T,,, Oii’ 
trt,,k and 0, k by accurate Gaussian quadrature [Xl. 

(2) Sol&g simuitaneous equations (I6)-( 18) by 
the use of the quasi-Newton scheme with Broyden’s 
update, calculate unknown ri or f,, 0 or q. 

(3) Calculate new shape of the free surface by the 
use of equation (37). 

(4) Examine the convergence of the shape of the 
free surface, if the results are not converged, apply the 
updated shape of the free surface to calculate the 
matrices and to restart the second step. 

NLIMERiCAL RESULTS 

The themocapillary convection with$uf,free supfGre 
In order to examine the efficiency of this method, 

one firstly calculates the thermocapillary convection 
in low Prandtl number liquid by the use of the quasi- 
Newton method with Broyden’s update. The physical 
parameters arc the same as the experimentaf con- 
ditions of Camel et at. [&] : P, = 0.015 ; G, = 0; 
C, = O.Ot6 for R, < 100, c, = 0.08 far 
2000 > R, 2 100, C, = 0.16 for R, 2 2000. 

A typical distribution of grids on the boundaries 
for C, = 0.08 is tabulated in Table 1. 

Since the significant boundary layers exist along the 
free surface, walls and especially near the stagnation 
point on the cold wall at high n/r,, R,, a non-uniform 
grid is needed for the grid refinement near these 
boundaries. The smallest grid size on the cold corner 
is four times smaller than the one corresponding to a 
uniform grid. The mesh spacing is gradually increased 
away from the boundaries. 

The shapes of free surfaces are assumed to be Rat, 
which is true for low Prandtl number liquid as proved 
by the experiment of Camel et ul. [6]. 

The convergence character for C, = 0.08, 
R, = 1000 is tabulated in Table 2. The convergence 
rate is almost quadratic. 

Numerical results of the surface velocity at x--center 

TabIe 1. The distribution of grid points for C, = 0.08 

Table 2. The conver~~~~~c~~~cter for C, = D.08, & = I&X? 
_.._- 

steps 1 2 3 4 
~_l"_ 

nlax~L~~-tf~-' 1 0.23 0.31 (-1) 0.54 (-2) 0.32 (-4; 
- .- - 

1 10 100 1000 1 oaaa 
Re 

FIG. 2. Comparison of surface velocity at x-center to Camel’s 
experimental data. 

are presented in Fig. 2. As shown in Fig. 2, there is 
good agreement between our results and the exper- 
imental data of Camel et al. [6] _ 

The velocity profiles at x-center position and the 
distributions of the surface velocities are drawn in 
Figs. 3 and 4, respectively. As shown in Figs. 3 and 4, 
in the low Reynolds numbers region, a full developed 
Poiseuille-Couette flow-Birikh’s solution [6, X0] 
appears in central region. There are the accelerated 
and decelerated flow regions in the left and right lat- 
eral of central region, respectively. The length of the 
region of fully developed Foise~lil~~Couette Row is 
reduced with increasing R,; eventuahy the region of 
Birikh’s solution disappears. These results are similar 
to ref. [lo]. Agreement with experimental [6] and 
numerical [IO] results would then justify our method 
as an important technique for this problem. 

A typical distribution of grids on the boundaries 
for C, = I .O is tabulated in Table 3. The convergence 

-0.70 -0.00 0.10 a.20 
vx 

FIG. 3. Profiles of velocity V, at x-center for various R, at 
P. = O.OlS. 

FIG. 4. Surface velocity distributions for various R, at 
P, = 0.01s. 
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FIG. 5. Free surface and streamline map in thermocapillary 
convection for M, = 50. 

1.60 - 

0.00 0.20 0.40 0.60 0.80 1.00 
X 

FIG. 6. Free surface and streamline map in thermocapillary 
convection for M, = 200. 

character for P, = 1 .O, R, = 1000 is tabulated in Table 
4. 

The efsects of the Marangoni-Reynolds numbers. 
One considers a pure Marangoni convection with the 
chosen physical parameters : G, = 0, P, = 1.0, 
C, = 1 .O, B, = 0, M, = 50, 200, 1000, 2000. 

The influence of the Marangoni number on the free 
surface shape and flow fields is shown in Figs. 5 and 
6. 

As shown in Figs. 5 and 6, there are vorticity 
sources on the free surface ; they propagate into inner 
flow fields, resulting in one clockwise vortex whose 

Table 3. The distribution of grid points for C, = 1 .O 

s, s Sb s 
41 41 51 51 

0.80 

0.60 

0 

0.40 

FIG. 7. Surface temperature distributions for various M, at 
P, = 1.0. 

0.20 

0.18 

0.16 

0.14 

0.12 

3 0.10 

0.08 

0.06 

0.04 

0.02 

0.00 
0.00 0.20 0.40 0.60 0.80 1.00 

x 

FIG. 8. Surface velocity distributions for various M, 
P, = 1.0. 

at 

center is situated near the free surface. The vortex 
center moves towards the cold wall with increasing 

M,. 
The distributions of temperature and velocity on 

the free surface are drawn in Figs. 7 and 8, respec- 
tively. There are large temperature gradients in both 
corners since boundary layers exist, and notice that 
the temperature gradient at the cold corner is higher 
than at the hot corner. In this region the high tem- 
perature gradients produce local large driving forces 
leading to a local increase in surface velocity. Two 
maximums of surface velocity become obvious with 
increasing M,. 

The effects of the Prandtl numbers. The physical 
parameters are chosen as : P, = 0.05, R, = 50; 

Table 4. The convergence character for P, = 1, R, = 1000 

Outer iterations rn Inner iterations n max IJ&Jq-‘j m = 2 inner iteration 

I 5 0.15 n 
2 

max [a:-~:- ‘1 
4 0.24 (- 1) 1 0.90 

3 
(- 1) 

3 0.12 (- 1) 2 0.21 
4 

(-1) 
3 0.61 (-2) 3 0.43 

5 
(- 2) 

2 0.37 (-2) 4 0.19 
6 

(-4) 
2 0.15 (-2) 

7 1 0.85 (- 3) 
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- - - 

1 

FIG. 9. The shape of the free surface and isotherm map for rlcknolz~lrdqemeRt_The project is supported by the National 

P, = 0.05, R, = 50. Natural Science Foundation of China. 

P,=50, M,=2500; C,=l; G,=O; B,=O. As 
shown in Figs. 9 and 10, for P, = 0.05, the shape 

of the free surface becomes flatter, and the isotherm 
approaches to a straight line, heat conduction is the 
main effect and heat convection can be eliminated; 
for P, = 50, the isotherm is bent by the convection, 
and the free surface deflection is also different from 
buoyancy convection case as in Fig. 6 of ref. [14]. 
Notice that there are large temperature gradients on 
both corner of the free surface, especially on the right 
cold corner in Fig. 10, but such a picture does not 
appear in Fig. 9. These results show that the strong 

influences of Prandtl numbers on the free surface 
temperature distributions produce different thermo- 
capillary flows, free surface shapes, flow structures 

and heat transport characters. 

REFERENCES 

5. 

6. 

CONCLUSIONS 

Employing the divergence theorem to the non- 
linear convective volume integral of the boundary 
element formulation, the velocity and temperature 
gradients are eliminated, and the complete for- 

mulation is written in terms of velocity and tempera 
ture. This provides considerable reduction in storage 

1.50 

7. 

8. 

9. 

10. 

II. 

12. 

S. Ostrach. Low-gravity fluid flows, Ann. Rear. Fluid 
Mwh. 14, 313-345 (1982). 
S. H. Davis, Thermocapillary instabilities, Ann. Rcr. 
Fluid Mech. 19,403435 (1987). 
L. C. Napolitano, Surface and buoyancy driven free 
convection. Ac,ta Astronuutica 9(4). 199-215 ( 1982). 
M. C. Limbourg and P. H. Georis, Preliminary results of 
Texus 19(TEM06-8) experiment : Marangoni convection 
around a surface tension minimum, Procwdin,q.s VIIth 
Europeun Swynkmt on Muteri& and Fluid Sciww.s in 
Microgrut~ity, pp. 3477351, Oxford, U.K. (1989). 
J. Metzger and D. Schwdbe, Coupled buoyant and thermo- 
capillary convection, PhysicoChem. Hydrodyn. 10, 263% 
282 (1988). 
D. Camel, P. Tison and J. J. Favier, Marangoni flow 
regimes in liquid metals. Acta Astronuu/ica 13, 723-726 
(1986). 
A. G. Kirdyashkin, Thermogravitational and thermo- 
capillary flow in a horizontal temperature gradient, Int. 
J. Heut Muss Trun.+r 27, 120551218 (1984). 
J. L. Bergman and J. R. Keller, Combined buoyancy, 
surface tension flow in liquid metals, Nurn. Heut Truns. 
13,49-63 (1988). 
M. Strani, R. Piva and G. Graziani, Thermocapillary 
convection in a rectangular cavity: asymptotic theory 
and numerical simulation, J. Fluid Mech. 130, 347-376 
(1983). 
H. Ben Hadid and B. Roux, Thermocapillary convection 
in long horizontal layers of low-Prandtl-number melts 
subject to a horizontal temperature gradient. J. p&d 
Me&. 221, 77 103 (1990). 
B. M. Carpenter and G. M. Homsy, High Marangoni 
number convection in a square cavity: part 2, P~JY. 
Fluids A 2, 1377149 (1990). 
J. R. Keller and J. L. Bergman, Thermocapillary cavity 

1.25 convection in wetting and nonwetting liquids, Numerical 
Heat Trun.$?r 18(A), 33-49 (1990). 

13. Y. Kamototani and J. Platt. Effect of free surf&c shape 
on combined thermocapillary and natural convection, 
J. Thermwhvs. Heat Trunsfb 6(4). 721-726 (1992). 

14. C. Cuvelier -and J. M. Drjessen, ‘Thermocapillary free 
boundaries in crystal growth, J. Fluid Mech. 169, 1 -26 
(1986). 

0.25 
15. E. Crespo der Arco, G. P. Extremet and R. L. Sani. 

Thermocapillary convection in a two-layer fluid system 
with flat interface, Adr. Space Res. ll(7). 1299132 
(1991). 

FIG. 10. The shape of the free surface and isotherm map for 
P, = 50, M,, = 2500. 

16. B. P. Leonard, A stable and accurate convective model- 
ing procedure based on quadratic upstream inter- 
polation, Camp. Math. Appl. Mech. Etr,qnq 12, 59 7X 
(1979). 

and computational requirements while improving 
accuracy. The non-linear equation systems of the 
boundary element discretization are solved by the 
quasi-Newton scheme with Broydcn’s update. Good 
agreement between our results and experimental [6] 
and numerical [lo] results in the case of flat free sur- 
face at P, = 0.015 is obtained. The method is further 

used to analyze the thermocapillary convection with 
a free surface. Some important numerical results are 
given. Especially, the effects of widely varying physical 

parameters : Marangoni numbers, Reynolds numbers 
and Prdndt] numbers on the free surface shapes, 
velocity and temperature fields are presented. 



17. 

1X. 

19. 

20. 

21. 

Boundary element analysis of thermocapillary convection 1071 

S. V. Pollard and A. L. W. Siu, The calculation of some 
laminar flows using various discretization schemes, 
Camp. Math. Appl. Mech. Engng 35,293-308 (1982). 
K. Kitagawd, C. A. Brebbia, L. C. Wrobel and M. 
Tanaka, Boundary element analysis of viscous flow by 
penalty function formulation, Engng Anal. 3(4), 194- 
200 (1986). 
K. Kitagawa, C. A. Brebbia. L. C. Wrobel and M. 
Tanaka, Viscous flow analysis including thermal con- 
vection. In Boundary Elemenis IX (Edited by C. A. 
Brebbia. M. Tanaka and T. Honma), Vol. 2, pp. 459- 
476. Springer, Berlin (1987). 
W.-Q. Lu and H.-C. Chang, An extension of the bihar- 
manic boundary integral method to free surface flow in 
channels, .I. Comp. Phys. 77(2), 34&360 (1988). 
W.-Q. Lu, Simulation of solitary wave flow fields on free 
falling thin liquid film using boundary element method. 

In Advances in Heat Pipe Science and Technology (Edited 
by Ma, Tongze), pp. 5459. International Academic 
Publishers, Beijing (1992). 

22. W.-Q. Lu, Boundary element method of analysing non- 
linear phenomena on gas-liquid two-phase free surface 
at middle and higher Reynolds numbers. In Com- 
putational Mode&g qf Free and Moving Boundary 
Problems II (Edited by L. C. Wrobei and C. A. Brebbia), 
pp. 167-176. Computational Mechanics Publications. 
Southampton, U.K. (1993). 

23. W.-Q. Lu, Simulation of thermocapillary convection in 
a two-layer immiscible fluid system using a boundary 
element method, J. Thermal Sci. l(4), 259-266 (1992). 

24. J. E. Dennis and J. More, Quasi-Newton methods, 
motivation and theory, SIAM Rev. 19,4689 (1977). 

25. C. A. Brebbia, J. C. F. Telles and L. C. Wrobel, Boundary 
Element Techniques. Springer-Verlag, Berlin (1984). 


